Publication Alert

Check out out new publication, led by Rachele Zaccherini, on Mitigation of Rayleigh-like waves via multi-layer metabarriers

by Eleni Chatzi
Figure reused from Appl. Phys. Lett. 117, 254103 (2020): (a) Schematic of the experimental setup. (b) Schematic of the vertical cross section of the box for the three investigated metabarrier configurations. (c) Model of the vertical oscillator
Figure reused from Appl. Phys. Lett. 117, 254103 (2020): (a) Schematic of the experimental setup. (b) Schematic of the vertical cross section of the box for the three investigated metabarrier configurations. (c) Model of the vertical oscillator

In this work, we experimentally and numerically investigate the propagation and attenuation of vertically polarized surface waves in an unconsolidated granular medium equipped with small-scale metabarriers of different depths, i.e., arrays composed of one, two, and three embedded layers of sub-wavelength resonators. Our findings reveal how such a multi-layer arrangement strongly affects the attenuation of the surface wave motion within and after the barrier. When the surface waves collide with the barriers, the wavefront is back-scattered and steered downward underneath the oscillators. Due to the stiffness gradient of the granular medium, part of the wavefield is then rerouted to the surface level after overcoming the resonant array. Overall, the in-depth insertion of additional layers of resonators leads to a greater and broader band wave attenuation when compared to the single layer case.

Read more in Volume 117 of Applied Physics Letter, external pagelink

JavaScript has been disabled in your browser